
 Cool MacsBug Tricks (an informal guide)
 By Macneil Shonle

This guide is to help you in learning to use MacsBug. MacsBug is
a system
extension that can help you debug your programs, it is free and
is available
from Apple Computer. Note that the name MacsBug is an acronym for
Motorola
advanced computer systems debuger.

This guide is a list of "tricks," but it is just the tip of the
iceberg of
the cool stuff you can do. The guide will start off with some
easy topics
aimed towards beginners and then it will go into some more
advanced topics.
All of them are cool. Hopefully after reading this the help part
of MacsBug
won't be so intimidating.

Number Conversion
MacsBug can be used as a quick hexadecimal to decimal converter,
and vise
versa. I used to use a calculator DA, but now I just simply drop
into
MacsBug and type in the number I want to convert and hit return.

Example: You want to find out what 0x3E is in decimal. When in
MacsBug, type
in $3E and hit return. This will be the output:

$3E = $0000003E #62 #62 '***>'

The first number ($0000003E) is the value in hexadecimal that you
just typed
in. The second number is what the value is as an unsigned
decimal, the third
is the signed version. The set of characters in single quotes
('***>') is
the ASCII representation of the number, the null character is
denoted with
the bullet.

You can find out the decimal/hexadecimal equivalent of any ASCII

character
by typing the letter balanced between two single quotes.

Example: Type in: 'A' and hit return. You will get #65 as your
answer.

By the way-The dollar sign means that the number is in
hexadecimal. Much
like C's 0xXX notation, $XX is how hexadecimal numbers are
represented in
assembly. Numbers in MacsBug will default to hexadecimal, except
for when
the hexadecimal number is a command or a regster. For example:
"ea" is the
command to restart the current application, when you type in ea
it will try
this command, you must type in $ea in order to avoid this
conflict.

Similarly, you have to type a # in order to express decimal
numbers. You can
use the conversion method just described (type in the number, hit
return) to
find out a decimal numberÕs corresponding hexadecimal number and
ASCII
character.

What Was My Monitor Size? HereÕs an impresive way to show a
friend how many
pixels horizontally and vertically they have on their monitor
(other than
looking at the manual, or something silly like that). Drop into
MacsBug and
type in: dm @@MainDevice GDevice. This will show you the struct
members of
the MainDevice (which happens to be a GDevice), you should see
the gdPMap
indented, three lines below it will be bounds with four numbers
to the right
of it. These four numbers are the top, left, bottom and right
coordinates of
the monitor, respectively.

The dm command is short for display memory, after you type in dm
type in the
address of the memory you want to display. MainDevice is a system
global

that is a handle (a pointer to a pointer) to the main graphics
device (the
one with the menu bar). The two @@ symbols are how you express
double-indirection in MacsBug, in C you use "*" to express
indirection (i.e.
de-referencing) which is in put in prefix notation. People who
program in
Pascal can use the postfix indirection notation by saying "dm
MainDevice^^
GDevice".

After you give the dm command the address, you give it the format
you want
to see it diplayed as. You can use any number for the number of
bytes you
want displayed, or you can say "Rect", for instance, to see the
first eight
bytes of the memory in the form of a rectangle. You can also use:
Byte,
Word, Long, SignedByte, SignedWord, SignedLong, UnsignedByte,
UnsignedWord,
UnsignedLong, PString, CString, and PixMap, GDevice, RGBColor,
CGrafPort and
any number of other templates you may have installed.

Example: if you know a rectangle is at address $00058EA6 and you
want to see
what its value is, all you have to do is type in "dm $00058EA6
Rect".

By the wayÑA template a layout of memory that MacsBug knows about
(such as a
C struct or a Pascal record), you can type "tmp" to find out all
of the
templates your version of MacsBug has.

Don't you hate it when you are working in an application, minding
your own
business, when all-of-a-sudden the program quits and the system
tells you an
error of type X occured? There are many applications made where
you can look
up these numbers and find out what went wrong. MacsBug can also
do this, all
you have to do is type error and then the error number. Keep in
mind that
the error numbers the system gives you are decimal (not

hexadecimal), so you
should put a "#" in front of them.

Example: The sytem tells you: "An error of type 4 has occured,"
drop into
MacsBug and type "errorÊ#4", MacsBug will then output
"$0004Ê#4ÊzeroÊdivideÊerror".

Note: This error feature is not in earlier versions of MacsBug,
so you may
not have it.

The Simple Calculator You can use MacsBug as a simple calucator.
LetÕs say
you need to know what seven times seventeen is, type in
"#7Ê*Ê#17", and hit
return. The number 119 should now be on your screen. It will be
hidden in
the line:

#7 * #17 = $00000077 #119 #119 '¥¥¥w'

The lower case letter w is the 119th ASCII character, as the
previous line
shows us. LetÕs try another example, how about five plus six? You
would type
in "#5 + #6", and hit return. You should then see:

#5 + #6 = $0000000B #11 #11 '¥¥¥¥'

MacsBug can also handle multiple operations at a time, like five
plus six
plus ten. If you want to say something like five plus six times
four
remember to put parentheses around the apropiate numbers. MacsBug
has no
concept of orders of operations and itÕs quite possible for it to
add before
it multiplies. So say this: "#5Ê+ (#6Ê*Ê#4)", which equals #29,
instead of
"#5Ê+Ê#6Ê*Ê#4", which equals #44.

You can use +, -, *, /, MOD for arithmetic operations. You can
use AND (or
&), OR (or |), NOT (or !), XOR for boolean operations. And you
can use = (or
==), <> (or !=), <, >, <=, >= for equality operations.

If you type in "#5Ê+Ê#4Ê=Ê#9" MacsBug will give you a one,
meaning that the
equality you just said was true. If you said "#5Ê+Ê#4Ê=Ê#10",
Macsbug will
give you a zero, meaning that the equality five plus four equals
ten is
false.

Moving the Cursor Here is a cool trick to move the cursor. It
done by
setting memory, the mouse tracking variables specifically. But
IÕd like to
talk about setting memory beforehand. There are four commands in
MacsBug to
set memory: SB (set byte), SW (set word), SL (set long), and SM
(set
memory). You give each of these commands an address first, and
then the
values of what you want to set the memory to. Example: There is a
byte that
you have the address of that you want to set to ten, you should
type in:

SB $XXXXXXXX #10

where $XXXXXXXX is the address of the byte. Another example:
There is a long
that you have the address of that you want to set to "$4D616320",
you should
type in:

SL $XXXXXXXX $4D616320

again, where $XXXXXXXX is the address of the long. You can use
the SM
command the same way in the case that the length you want to set
is not 1, 2
or 4 bytes long. You can use SW when you want to set a word (2
bytes).

If you are familiar with Points (the vertical and horizontal
coordinates of
a point on the graf plane), you should know that they take up
four bytes in
memory. The high two bytes (the high word) is the vertical
coordinate, and

the low two bytes (the low word) is the horizontal coordinate.
There are two
global variables that are both Points, one called MTemp, the
other called
RawMouse, these variables are the information the Macintosh uses
for
controling the cursor. You can set these points by using SL.

There is also a byte called CrsrNew, set this byte to 1 when you
want to
notify the Macintosh that the cursor posistions have changed.
This is how
you move the mouse to point (5,Ê6), near the upper-left corner of
the
screen:

SL MTemp $00060005 SL RawMouse $00060005 SB CrsrNew #1

Make sure MTemp and RawMouse have the same value. Now type
Command-G to see
your newly moved cursor.

Recovering from a Hung Serial Port
Sometimes when you're AppleTalking or modeming and something goes
wrong
(like you switch the modem off while data is being sent to it),
the comptuer
will hang. The mouse will still move, but clicking will have no
effect.
Here's the solution:

Drop into MacsBug. You should see the routine name "_vSyncWait"
plus
something as the current location. If you don't, you probably hit
the system
while it was doing something else. Hit Command-G to get back out
of MacsBug,
and try again. After a few tries you should find _vSyncWait.

_vSyncWait is the routine that the system uses to wait for some
input from a
serial port. If you can read assembly code, youÕll see that itÕs
pretty
simple. HereÕs the dump of the significant part:

+0000 4080BB8C MOVE.W $0010(A0),D0 |
3028 0010

+0004 4080BB90 BGT.S _vSyncWait ; 4080BB8C |
6EFA

Register A0 is pointing to a system data structure, in which a
word will be
cleared when the awaited input arrives. The MOVE.W instruction
grabs this
word and puts it into register D0. The BGT.S instruction then
Branches back
to the MOVE.W if the byte it just fetched is Greater Than zero.
So it
happens that this byte is never going to arrive for whatever
reason, but the
computer is going to wait for eternity. The secret to fixing this
is to use
Command-T to go step along until the MOVE.W instruction is
displayed as the
current instruction. Now use the sw command to set "@(A0+10)" to
zero:

sw @(A0+10) 0

Hit Command-T twice more. The MOVE.W instruction will take the
zero you just
set into memory and put it in D0, so the D0 display on the left
of the
screen should have its right four digits all zeros. Then when you
execute
the BGT.S instruction, it should not go back to the MOVE.W since
zero is not
greater than zero.

Hit Command-G to go. If this was the only byte the software was
waiting for,
then it should continue running, although it may go a little
crazy because
it's been suddenly disconnected from whatever peripheral it was
talking to.
Quit the program, fix your hardware, and try again.

Shameless Strobe Light Trick
Okay, this is a really useless trick, but itÕs cool for at least
a little
while. Go into MacsBug. If you have a single screen type in
"swap", the
console should then say "Display will be swapped after each trace
or step",

if it doesnÕt type in "swap" again. Swapping is when the screen
switches
from the MacsBug console to the normal Macintosh screen. We want
it to swap
after each trace or step, which is what we just did up above. Now
we need it
to step, thereby swapping the screen, the "s" command (the step
command) is
just what we need to do this. We want this to happend more than
once, so we
type in: "s 100", which steps 100 times. Enjoy the show.

Warning: Swapping with a number like 1000 can render some
machines, like my
PowerBook 165c, useless until it is all over with, so keep the
numbers low
or the patience high.

GetKeys from within MacsBug
There is a routine in the Macintosh toolbox called GetKeys, this
routine is
great for game programmers who want a reasonably fast way to read
the
keyboard, without using (slower) events. The problem for C and C+
+
programmers using this routine is that the KeyMap type is a
Pascal packed
array. Each bit of the packed array is designated to a certain
key, the bit
is set to 1 if the key is down, and set to zero if the key is up.
This array
takes up 16 bytes (128 bits). C cannot access the elements of the
packed
array like a normal array, so the programmer has to mask out some
bits to
get the result that he/she wants. There is a desk accessory named
"GetKeys,"
that is made just for this case. The problem is, you might not be
on a
machine with that program on it.

Good thing MacsBug is able to help us. Here is how you locate the
bit for
the letter "M": go into MacsBug and type in "dm KeyMap", but
don't hit
return just yet. Now strike the escape key, this should swap the
screen.

Press and hold down the letter "M" on your keyboard, this should
swap the
screen back. Now, while still holding down "M", press return.
This is what
you should see:

Displaying memory from 0174
00000174 0000 0000 0040 0000 0000 0000 0000 0000¥¥¥¥¥@¥¥¥¥¥¥¥¥¥¥

The number "00000174" is the address of the KeyMap global
variable. The next
set of numbersÒ0000Ê0000Ó is the first element of the C version
of the
array, in other words, itÕs: "keyMap[0]". The next set of numbers
"0040Ê0000" is the second element of the array, keyMap[1]. The
next group of
8 hexadecimal digits is the third element (keyMap[2]), and the
last group of
8 hexadecimal digits is the fourth element (keyMap[3]). The
series of
bullets is what the array looks like in ASCII form. In the second
group
("0040Ê0000") there is a 4 in the midst of all of those zeros.
This is the
bit that is set to 1 whenever the "M" key is held down. So, to
see if the
"M" is down from within C we will do this:

KeyMap keyMap;
GetKeys(keyMap);

if(keyMap[1] & 0x00400000)
 DoMKeyDown();

The Lost Paper
I was once typing in some text in a word processor, when the
computer
suddenly crashed on me. I didn't save a copy on to the hard-disk
yet. I had
to restart the computer and type it all over again. But wait, the
paper is
still in the machine I thought to myself. You see, when you
restart, all of
the computerÕs memory doesn't get cleared, it just stays to what
it was
until it gets replaced with other information, much like the

behavior of a
hard-disk. I had one thing going for me, I had MacsBug installed.
Here are
the steps I took to recover the paper:

First, I logged all of the work I was doing in MacsBug to a file.
I did this
using the log command. All you need to give the log command is
the name of
the new file to log to. I named it MyPaper. Good, now all of my
MacsBug
session will be on the hard-disk so I can open it up with a
normal text
editor when IÕm done.

Next, I needed to find where in memory my paper was. I did this
using the
"f" command. The first two parameters for this command is the
range in
memory in which you want MacsBug to search through. I wanted to
search
through all of my memory, which is 8 megs on my machine, so I
typed in:
"fÊ0Ê(400Ê*Ê400Ê*Ê8)Ê"any string". Where 0 is the beginning of
memory and 8
megs is the top of it. (Note: "400Ê*Ê400" is exactly one megabyte
of
memory.) The last parameter is the search string, balanced
between two
single quotes. I wanted to pick a distinct string, otherwise I
would have
found other parts of memory, which would take longer to do. I
knew the most
famous mammal, the aardvark, was mentioned in my paper, so I
typed in this
for the find command:

f 0 (400 * 400 * 8) "aardvark"

MacsBug then started searching for me. It came up with a small
memory dump
of something with the word arrdvark in it, but the words after it
were not
mine, which meant that I found another part of memory instead of
my paper. I
hit return to tell MacsBug to keep on searching. MacsBug then
came up with a

dump from my paper:

Searching for "aardvark" from 00000000 to 007FFFFF
00358200 6161 7264 7661 726B 8000 0000 0000 002C aardvark answer,
Which was
very good news indeed! This told me that the string "aardvark
answer" could
be found at address 00358200. (I got this address from the
leftmost number
given.)

Now that I knew where it was, the rest my task would be easy. I
used
MacsBugÕs display ASCII command to show me what came after it, by
typing in:
dma 00358200. You might not have this command, in which case
youÕll have to
use plain old dm, instead of dma. I hit return until my paper was
done being
displayed.

Note: You can subract a number from the address to see what was
before it.

I then typed in "log" again, which closed my log. Finally, I went
out of
MacsBug and opened the log file with SimpleText. Remember, the
log had my
whole session not just the paper so I had to delete the addresses
and such
from it, which really isn't that hard to do, if you know how to
use your
mouse and your delete key efficiently. The paper was saved.

Warning: In your search you might stumble upon MacsBugÕs very own
memory,
with its own copy of your search string. To get out of this loop,
start the
search over again with the base search address being outside of
MacsBugÕ's
memory. Credits
The authors of this are Macneil Shonle and Dustin Mitchell of The
Syzygy
Cult, a programming group that makes games and utilities. Dustin
reviewed
this and submitted the Recovering from a Hung Serial Port
section, thanks

Dustin!

Email MacneilS@aol.com if you have some input on how I can make
Cool MacsBug
Tricks even better; nothing is too small to mention. Thanks for
reading!

Copyright© 1995, Macneil Shonle. All rights reserved.

